Section 3.3
 The Product and Quotient Rules for Differentiation

(1) The Product Rule
(2) The Quotient Rule

Differentiating a Product of Functions

Suppose that $f(x)$ and $g(x)$ are two differentiable functions.
Their product $f g$ is defined by $f g(x)=f(x) g(x)$. What is $(f g)^{\prime}(x)$?

$$
\begin{aligned}
& f g(x+h) \\
& \frac{d}{d x}(f g(x))=(f g)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\overbrace{f(x+h) g(x+h)}-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h) \overbrace{-f(x+h) g(x)+f(x+h) g(x)}-f(x) g(x)}{h} \\
& \text { By Product Law of Limits } \\
& =\overbrace{\underbrace{\left(\lim _{h \rightarrow 0} f(x+h)\right)}_{=f(x), \text { by continuity of } f}\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}+\overbrace{g(x)\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)} \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) .
\end{aligned}
$$

(Note that, f and g are continuous because they are differentiable.)

The Product Rule

To summarize, if $f(x)$ and $g(x)$ are differentiable at $x=a$, then we have just proved that...
(I) The product $f g(x)$ is differentiable at $x=a$.
(II) $(f g)^{\prime}(a)=f(a) g^{\prime}(a)+g(a) f^{\prime}(a)$, or equivalently

$$
\left.\frac{d}{d x}(f g(x))\right|_{x=a}=\left.\left(f(x) \frac{d g}{d x}+g(x) \frac{d f}{d x}\right)\right|_{x=a}
$$

(These last two equations say the same thing in Lagrange and Leibniz notation respectively.)

The Product Rule

If $f(x)$ and $g(x)$ are differentiable at $x=a$, then $(f g)(x)$ is differentiable at $x=a$ and

$$
(f g)^{\prime}(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) .
$$

Example I:

(I) $\frac{d}{d x}((4 x-3)(3 x+5))$
(II) $\frac{d}{d x}\left(\sqrt{x}\left(x^{2}+1\right)\right)$
(III) $\frac{d}{d x}\left(x e^{x}\right)$

Differentiating a Quotient of Functions

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{f}{g}(x)\right)=\left(\frac{f}{g}\right)^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{g(x) f(x+h)-f(x) g(x)+f(x) g(x)-f(x) g(x+h)}{h g(x) g(x+h)} \\
& =\frac{g(x)\left(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right)-f(x)\left(\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right)}{g(x)\left(\lim _{h \rightarrow 0} g(x+h)\right)}
\end{aligned}
$$

If $f(x)$ and $g(x)$ are differentiable at $x=a$ and $g(a) \neq 0$, then the quotient $\frac{f}{g}(x)$ is differentiable at $x=a$.

The Quotient Rule

If $f(x)$ and $g(x)$ are differentiable at $x=a$ and $g(a) \neq 0$, then $\left(\frac{f}{g}\right)(x)$ is differentiable at $x=a$ and

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

Example II:

(I) $\frac{d}{d x}\left(\frac{x^{2}+1}{\sqrt{x}}\right)$
(II) $\frac{d}{d x}\left(\frac{e^{x}}{1+e^{x}}\right)$

Example III, Product Rule

Suppose that

$$
\begin{array}{ll}
f(1)=-2 & g(1)=4 \\
f^{\prime}(1)=-3 & g^{\prime}(1)=1
\end{array}
$$

(I) Find $h^{\prime}(1)$ if $h(x)=5 f(x)-4 g(x)$.
(II) Find $h^{\prime}(1)$ if $h(x)=f(x) g(x)$.

Example IV, Quotient Rule

Suppose that

$$
\begin{array}{ll}
f(1)=-2 & g(1)=4 \\
f^{\prime}(1)=-3 & g^{\prime}(1)=1
\end{array}
$$

(I) Find $h^{\prime}(1)$ if $h(x)=f(x) / g(x)$.
(II) Find $h^{\prime}(1)$ if $h(x)=\frac{1+g(x)}{1-f(x)}$.

